Nuprl Lemma : geo-le-iff
∀e:BasicGeometry. ∀A,B,C,P:Point.  (|AB| ≤ |CP| ⇐⇒ CP ≥ AB)
Proof
Definitions occuring in Statement : 
geo-le: p ≤ q, 
geo-length: |s|, 
geo-mk-seg: ab, 
basic-geometry: BasicGeometry, 
geo-ge: ab ≥ cd, 
geo-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
geo-le: p ≤ q, 
squash: ↓T, 
sq_stable: SqStable(P), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
geo-ge: ab ≥ cd, 
not: ¬A, 
false: False, 
stable: Stable{P}, 
geo-eq: a ≡ b, 
uiff: uiff(P;Q), 
true: True, 
geo-between: B(abc), 
cand: A c∧ B, 
geo-length: |s|, 
geo-length-type: Length, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
respects-equality: respects-equality(S;T)
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,P:Point.    (|AB|  \mleq{}  |CP|  \mLeftarrow{}{}\mRightarrow{}  CP  \mgeq{}  AB)
Date html generated:
2020_05_20-AM-09_53_23
Last ObjectModification:
2020_01_28-AM-09_58_55
Theory : euclidean!plane!geometry
Home
Index