Nuprl Lemma : geo-le-iff

e:BasicGeometry. ∀A,B,C,P:Point.  (|AB| ≤ |CP| ⇐⇒ CP ≥ AB)


Proof




Definitions occuring in Statement :  geo-le: p ≤ q geo-length: |s| geo-mk-seg: ab basic-geometry: BasicGeometry geo-ge: ab ≥ cd geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-le: p ≤ q squash: T sq_stable: SqStable(P) exists: x:A. B[x] or: P ∨ Q geo-ge: ab ≥ cd not: ¬A false: False stable: Stable{P} geo-eq: a ≡ b uiff: uiff(P;Q) true: True geo-between: B(abc) cand: c∧ B geo-length: |s| geo-length-type: Length so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] respects-equality: respects-equality(S;T)

Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,P:Point.    (|AB|  \mleq{}  |CP|  \mLeftarrow{}{}\mRightarrow{}  CP  \mgeq{}  AB)



Date html generated: 2020_05_20-AM-09_53_23
Last ObjectModification: 2020_01_28-AM-09_58_55

Theory : euclidean!plane!geometry


Home Index