Nuprl Definition : geo-left-axioms

geo-left-axioms(g) ==
  (∀a,b,c:Point.  bc ⇐⇒ Colinear(a;b;c)))
  ∧ (∀a,b,c:Point.  (a leftof bc  leftof ca))
  ∧ (∀a,b,c:Point.  (a leftof bc  b ≠ c))
  ∧ (∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  x_z_y  ab))
  ∧ (∀a,b,c,y:Point.  (a bc  y ≠  Colinear(y;a;b)  bc))



Definitions occuring in Statement :  geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-left: leftof bc geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q
Definitions occuring in definition :  iff: ⇐⇒ Q not: ¬A and: P ∧ Q geo-left: leftof bc geo-between: a_b_c all: x:A. B[x] geo-point: Point geo-sep: a ≠ b implies:  Q geo-colinear: Colinear(a;b;c) geo-lsep: bc
FDL editor aliases :  geo-left-axioms

Latex:
geo-left-axioms(g)  ==
    (\mforall{}a,b,c:Point.    (\mneg{}a  \#  bc  \mLeftarrow{}{}\mRightarrow{}  Colinear(a;b;c)))
    \mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  leftof  ca))
    \mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  \mneq{}  c))
    \mwedge{}  (\mforall{}a,b,x,y,z:Point.    (x  leftof  ab  {}\mRightarrow{}  y  leftof  ab  {}\mRightarrow{}  x\_z\_y  {}\mRightarrow{}  z  \#  ab))
    \mwedge{}  (\mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \mneq{}  b  {}\mRightarrow{}  Colinear(y;a;b)  {}\mRightarrow{}  y  \#  bc))



Date html generated: 2017_10_02-PM-03_27_13
Last ObjectModification: 2017_08_09-PM-02_08_03

Theory : euclidean!plane!geometry


Home Index