Nuprl Lemma : geo-left-out-better-1
∀e:EuclideanPlane. ∀a,b,b',p:Point.  (p leftof ba 
⇒ b' # a 
⇒ (¬((¬B(ab'b)) ∧ (¬B(abb')))) 
⇒ p leftof b'a)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-between: B(abc)
, 
geo-left: a leftof bc
, 
geo-sep: a # b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-lsep: a # bc
, 
or: P ∨ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
geo-colinear: Colinear(a;b;c)
, 
not: ¬A
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
guard: {T}
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,b',p:Point.
    (p  leftof  ba  {}\mRightarrow{}  b'  \#  a  {}\mRightarrow{}  (\mneg{}((\mneg{}B(ab'b))  \mwedge{}  (\mneg{}B(abb'))))  {}\mRightarrow{}  p  leftof  b'a)
Date html generated:
2020_05_20-AM-09_56_19
Last ObjectModification:
2019_12_23-PM-08_44_31
Theory : euclidean!plane!geometry
Home
Index