Nuprl Lemma : geo-length_functionality

e:BasicGeometry. ∀[a,b,c,d:Point].  (|ab| |cd| ∈ Length) supposing (b ≡ and a ≡ c)


Proof




Definitions occuring in Statement :  geo-length: |s| geo-length-type: Length geo-mk-seg: ab basic-geometry: BasicGeometry geo-eq: a ≡ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a basic-geometry: BasicGeometry implies:  Q iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B prop: guard: {T}

Latex:
\mforall{}e:BasicGeometry.  \mforall{}[a,b,c,d:Point].    (|ab|  =  |cd|)  supposing  (b  \mequiv{}  d  and  a  \mequiv{}  c)



Date html generated: 2020_05_20-AM-09_52_02
Last ObjectModification: 2020_01_13-PM-03_24_49

Theory : euclidean!plane!geometry


Home Index