Nuprl Lemma : geo-length_functionality
∀e:BasicGeometry. ∀[a,b,c,d:Point].  (|ab| = |cd| ∈ Length) supposing (b ≡ d and a ≡ c)
Proof
Definitions occuring in Statement : 
geo-length: |s|
, 
geo-length-type: Length
, 
geo-mk-seg: ab
, 
basic-geometry: BasicGeometry
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
basic-geometry: BasicGeometry
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[a,b,c,d:Point].    (|ab|  =  |cd|)  supposing  (b  \mequiv{}  d  and  a  \mequiv{}  c)
Date html generated:
2020_05_20-AM-09_52_02
Last ObjectModification:
2020_01_13-PM-03_24_49
Theory : euclidean!plane!geometry
Home
Index