Nuprl Lemma : geo-lt-iff-strict-between-points

g:EuclideanPlane. ∀p,q:{p:Point| B(OXp)} .  (p < ⇐⇒ p ≤ q ∧ q)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-le: p ≤ q geo-X: X geo-O: O euclidean-plane: EuclideanPlane geo-between: B(abc) geo-sep: b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a euclidean-plane: EuclideanPlane prop: iff: ⇐⇒ Q and: P ∧ Q implies:  Q basic-geometry: BasicGeometry rev_implies:  Q cand: c∧ B geo-lt: p < q exists: x:A. B[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] geo-length-type: Length geo_ge: geo_ge(e; p; q) squash: T geo-le: p ≤ q sq_stable: SqStable(P) false: False quotient: x,y:A//B[x; y] not: ¬A geo-eq: a ≡ b

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p,q:\{p:Point|  B(OXp)\}  .    (p  <  q  \mLeftarrow{}{}\mRightarrow{}  p  \mleq{}  q  \mwedge{}  p  \#  q)



Date html generated: 2020_05_20-AM-09_59_48
Last ObjectModification: 2020_01_13-PM-03_43_38

Theory : euclidean!plane!geometry


Home Index