Nuprl Lemma : geo-lt-implies-gt-strong-1

g:EuclideanPlane. ∀a,b,c,d:Point.  (|cd| < |ab|  (∃w:Point. (B(awb) ∧ aw ≅ cd ∧ b)))


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: B(abc) geo-sep: b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T basic-geometry: BasicGeometry uall: [x:A]. B[x] euclidean-plane: EuclideanPlane prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q exists: x:A. B[x] or: P ∨ Q cand: c∧ B geo-lt: p < q rev_implies:  Q true: True squash: T uiff: uiff(P;Q) basic-geometry-: BasicGeometry- iff: ⇐⇒ Q l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False select: L[n] cons: [a b] subtract: m less_than: a < b ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k geo-strict-between: a-b-c geo-eq: a ≡ b

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (|cd|  <  |ab|  {}\mRightarrow{}  (\mexists{}w:Point.  (B(awb)  \mwedge{}  aw  \mcong{}  cd  \mwedge{}  w  \#  b)))



Date html generated: 2020_05_20-AM-10_00_01
Last ObjectModification: 2020_01_13-PM-03_43_08

Theory : euclidean!plane!geometry


Home Index