Nuprl Lemma : geo-midpoint-diagonals-congruent
∀e:BasicGeometry. ∀A,P,Q,p,q:Point.  (p=A=P 
⇒ q=A=Q 
⇒ PQ ≅ pq)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-midpoint: a=m=b
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
geo-midpoint: a=m=b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
stable: Stable{P}
, 
geo-eq: a ≡ b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
basic-geometry-: BasicGeometry-
, 
squash: ↓T
, 
true: True
, 
cand: A c∧ B
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,P,Q,p,q:Point.    (p=A=P  {}\mRightarrow{}  q=A=Q  {}\mRightarrow{}  PQ  \mcong{}  pq)
Date html generated:
2020_05_20-AM-09_57_18
Last ObjectModification:
2020_01_27-PM-10_01_02
Theory : euclidean!plane!geometry
Home
Index