Nuprl Lemma : geo-midpoint-diagonals-congruent
∀e:BasicGeometry. ∀A,P,Q,p,q:Point.  (p=A=P ⇒ q=A=Q ⇒ PQ ≅ pq)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-midpoint: a=m=b, 
geo-congruent: ab ≅ cd, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
geo-midpoint: a=m=b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
or: P ∨ Q, 
not: ¬A, 
false: False, 
stable: Stable{P}, 
geo-eq: a ≡ b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
basic-geometry-: BasicGeometry-, 
squash: ↓T, 
true: True, 
cand: A c∧ B
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,P,Q,p,q:Point.    (p=A=P  {}\mRightarrow{}  q=A=Q  {}\mRightarrow{}  PQ  \mcong{}  pq)
Date html generated:
2020_05_20-AM-09_57_18
Last ObjectModification:
2020_01_27-PM-10_01_02
Theory : euclidean!plane!geometry
Home
Index