Nuprl Lemma : geo-perp-in_functionality

e:BasicGeometry. ∀x:Point.
  ∀[a,b,c,d:Point].
    ∀x':Point
      ∀[a',b',c',d':Point].
        (uiff(ab  ⊥cd;a'b'  ⊥x' c'd')) supposing (d ≡ d' and c ≡ c' and b ≡ b' and a ≡ a' and x ≡ x')


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd basic-geometry: BasicGeometry geo-eq: a ≡ b geo-point: Point uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q geo-perp-in: ab  ⊥cd geo-colinear: Colinear(a;b;c) not: ¬A implies:  Q false: False right-angle: Rabc geo-congruent: ab ≅ cd prop: subtype_rel: A ⊆B guard: {T} basic-geometry: BasicGeometry rev_implies:  Q iff: ⇐⇒ Q

Latex:
\mforall{}e:BasicGeometry.  \mforall{}x:Point.
    \mforall{}[a,b,c,d:Point].
        \mforall{}x':Point
            \mforall{}[a',b',c',d':Point].
                (uiff(ab    \mbot{}x  cd;a'b'    \mbot{}x'  c'd'))  supposing 
                      (d  \mequiv{}  d'  and 
                      c  \mequiv{}  c'  and 
                      b  \mequiv{}  b'  and 
                      a  \mequiv{}  a'  and 
                      x  \mequiv{}  x')



Date html generated: 2020_05_20-AM-09_58_14
Last ObjectModification: 2019_12_26-PM-08_32_52

Theory : euclidean!plane!geometry


Home Index