Nuprl Lemma : geo-perp-midsegments

e:BasicGeometry. ∀a,b,c:Point.  (Rabc  (∀c',d,p:Point.  (c'=p=d  c'=a=c  d=b=c  Rbap)))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry right-angle: Rabc geo-midpoint: a=m=b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: or: P ∨ Q basic-geometry: BasicGeometry stable: Stable{P} not: ¬A false: False geo-eq: a ≡ b iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] geo-midpoint: a=m=b geo-cong-tri: Cong3(abc,a'b'c') cand: c∧ B uiff: uiff(P;Q) right-angle: Rabc

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    (Rabc  {}\mRightarrow{}  (\mforall{}c',d,p:Point.    (c'=p=d  {}\mRightarrow{}  c'=a=c  {}\mRightarrow{}  d=b=c  {}\mRightarrow{}  Rbap)))



Date html generated: 2020_05_20-AM-09_58_30
Last ObjectModification: 2020_01_27-PM-10_00_40

Theory : euclidean!plane!geometry


Home Index