Nuprl Lemma : geo-perp-midsegments
∀e:BasicGeometry. ∀a,b,c:Point.  (Rabc 
⇒ (∀c',d,p:Point.  (c'=p=d 
⇒ c'=a=c 
⇒ d=b=c 
⇒ Rbap)))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
right-angle: Rabc
, 
geo-midpoint: a=m=b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
or: P ∨ Q
, 
basic-geometry: BasicGeometry
, 
stable: Stable{P}
, 
not: ¬A
, 
false: False
, 
geo-eq: a ≡ b
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
geo-midpoint: a=m=b
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
right-angle: Rabc
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    (Rabc  {}\mRightarrow{}  (\mforall{}c',d,p:Point.    (c'=p=d  {}\mRightarrow{}  c'=a=c  {}\mRightarrow{}  d=b=c  {}\mRightarrow{}  Rbap)))
Date html generated:
2020_05_20-AM-09_58_30
Last ObjectModification:
2020_01_27-PM-10_00_40
Theory : euclidean!plane!geometry
Home
Index