Nuprl Lemma : geo-seg-congruent_transitivity
∀e:BasicGeometry
  ∀[s1,s2,s3:geo-segment(e)].
    (geo-seg-congruent(e; s1; s3)) supposing (geo-seg-congruent(e; s1; s2) and geo-seg-congruent(e; s2; s3))
Proof
Definitions occuring in Statement : 
geo-seg-congruent: geo-seg-congruent(e; s1; s2)
, 
geo-segment: geo-segment(e)
, 
basic-geometry: BasicGeometry
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
geo-seg-congruent: geo-seg-congruent(e; s1; s2)
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Latex:
\mforall{}e:BasicGeometry
    \mforall{}[s1,s2,s3:geo-segment(e)].
        (geo-seg-congruent(e;  s1;  s3))  supposing 
              (geo-seg-congruent(e;  s1;  s2)  and 
              geo-seg-congruent(e;  s2;  s3))
Date html generated:
2020_05_20-AM-09_49_14
Last ObjectModification:
2019_12_20-PM-07_37_45
Theory : euclidean!plane!geometry
Home
Index