Nuprl Lemma : geo-sum-eq-x
∀e:BasicGeometry. ∀a,b,c,d:Point.  ((X = |ab| + |cd| ∈ Length) 
⇒ (a ≡ b ∧ c ≡ d))
Proof
Definitions occuring in Statement : 
geo-add-length: p + q
, 
geo-length: |s|
, 
geo-length-type: Length
, 
geo-mk-seg: ab
, 
basic-geometry: BasicGeometry
, 
geo-X: X
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
prop: ℙ
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    ((X  =  |ab|  +  |cd|)  {}\mRightarrow{}  (a  \mequiv{}  b  \mwedge{}  c  \mequiv{}  d))
Date html generated:
2020_05_20-AM-09_57_51
Last ObjectModification:
2020_01_13-PM-03_41_16
Theory : euclidean!plane!geometry
Home
Index