Nuprl Lemma : geo-three-segment

e:EuclideanPlane. ∀[a,b,c,A,B,C:Point].  (ac ≅ AC) supposing (bc ≅ BC and ab ≅ AB and B(ABC) and B(abc))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: B(abc) geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a geo-congruent: ab ≅ cd not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} prop: euclidean-plane: EuclideanPlane or: P ∨ Q stable: Stable{P} geo-eq: a ≡ b iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,A,B,C:Point].    (ac  \mcong{}  AC)  supposing  (bc  \mcong{}  BC  and  ab  \mcong{}  AB  and  B(ABC)  and  B(abc))



Date html generated: 2020_05_20-AM-09_50_46
Last ObjectModification: 2019_12_20-PM-08_45_55

Theory : euclidean!plane!geometry


Home Index