Nuprl Lemma : implies-geo-between_functionality
∀e:EuclideanPlaneStructure
  (BasicGeometryAxioms(e) 
⇒ (∀a1,a2,b1,b2,c1,c2:Point.  (a1 ≡ a2 
⇒ b1 ≡ b2 
⇒ c1 ≡ c2 
⇒ (B(a1b1c1) 
⇐⇒ B(a2b2c2)))))
Proof
Definitions occuring in Statement : 
euclidean-plane-structure: EuclideanPlaneStructure
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
geo-eq: a ≡ b
, 
geo-between: B(abc)
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
cand: A c∧ B
, 
geo-eq: a ≡ b
, 
not: ¬A
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
geo-between: B(abc)
, 
geo-lsep: a # bc
, 
or: P ∨ Q
, 
geo-ge: ab ≥ cd
, 
geo-sep: a # b
, 
geo-gt-prim: ab>cd
, 
record-select: r.x
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Latex:
\mforall{}e:EuclideanPlaneStructure
    (BasicGeometryAxioms(e)
    {}\mRightarrow{}  (\mforall{}a1,a2,b1,b2,c1,c2:Point.    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  (B(a1b1c1)  \mLeftarrow{}{}\mRightarrow{}  B(a2b2c2)))))
Date html generated:
2020_05_20-AM-09_43_35
Last ObjectModification:
2020_01_27-PM-03_32_29
Theory : euclidean!plane!geometry
Home
Index