Nuprl Lemma : implies-geo-between_functionality

e:EuclideanPlaneStructure
  (BasicGeometryAxioms(e)  (∀a1,a2,b1,b2,c1,c2:Point.  (a1 ≡ a2  b1 ≡ b2  c1 ≡ c2  (B(a1b1c1) ⇐⇒ B(a2b2c2)))))


Proof




Definitions occuring in Statement :  euclidean-plane-structure: EuclideanPlaneStructure basic-geo-axioms: BasicGeometryAxioms(g) geo-eq: a ≡ b geo-between: B(abc) geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q subtype_rel: A ⊆B basic-geo-axioms: BasicGeometryAxioms(g) cand: c∧ B geo-eq: a ≡ b not: ¬A false: False uall: [x:A]. B[x] prop: guard: {T} geo-between: B(abc) geo-lsep: bc or: P ∨ Q geo-ge: ab ≥ cd geo-sep: b geo-gt-prim: ab>cd record-select: r.x iff: ⇐⇒ Q rev_implies:  Q

Latex:
\mforall{}e:EuclideanPlaneStructure
    (BasicGeometryAxioms(e)
    {}\mRightarrow{}  (\mforall{}a1,a2,b1,b2,c1,c2:Point.    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  (B(a1b1c1)  \mLeftarrow{}{}\mRightarrow{}  B(a2b2c2)))))



Date html generated: 2020_05_20-AM-09_43_35
Last ObjectModification: 2020_01_27-PM-03_32_29

Theory : euclidean!plane!geometry


Home Index