Nuprl Lemma : isosc-bisectors-between_1
∀e:HeytingGeometry. ∀a,b,c,m,a',b',m':Point.
  (c # ab 
⇒ ac ≅ bc 
⇒ (c-a'-a ∧ c-b'-b) 
⇒ a=m=b 
⇒ a'=m'=b' 
⇒ aa' ≅ bb' 
⇒ c-m'-m)
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-midpoint: a=m=b
, 
geo-strict-between: a-b-c
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
guard: {T}
, 
cand: A c∧ B
, 
heyting-geometry: HeytingGeometry
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
false: False
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
geo-midpoint: a=m=b
, 
geo-strict-between: a-b-c
, 
uiff: uiff(P;Q)
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
iff: P 
⇐⇒ Q
, 
geo-triangle: a # bc
, 
rev_implies: P 
⇐ Q
, 
geo-colinear: Colinear(a;b;c)
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,m,a',b',m':Point.
    (c  \#  ab  {}\mRightarrow{}  ac  \mcong{}  bc  {}\mRightarrow{}  (c-a'-a  \mwedge{}  c-b'-b)  {}\mRightarrow{}  a=m=b  {}\mRightarrow{}  a'=m'=b'  {}\mRightarrow{}  aa'  \mcong{}  bb'  {}\mRightarrow{}  c-m'-m)
Date html generated:
2020_05_20-AM-10_33_33
Last ObjectModification:
2019_12_03-AM-09_50_54
Theory : euclidean!plane!geometry
Home
Index