Nuprl Lemma : isosc-bisectors-between_1

e:HeytingGeometry. ∀a,b,c,m,a',b',m':Point.
  (c ab  ac ≅ bc  (c-a'-a ∧ c-b'-b)  a=m=b  a'=m'=b'  aa' ≅ bb'  c-m'-m)


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-midpoint: a=m=b geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T guard: {T} cand: c∧ B heyting-geometry: HeytingGeometry subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False select: L[n] cons: [a b] subtract: m geo-midpoint: a=m=b geo-strict-between: a-b-c uiff: uiff(P;Q) euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- iff: ⇐⇒ Q geo-triangle: bc rev_implies:  Q geo-colinear: Colinear(a;b;c)

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,m,a',b',m':Point.
    (c  \#  ab  {}\mRightarrow{}  ac  \mcong{}  bc  {}\mRightarrow{}  (c-a'-a  \mwedge{}  c-b'-b)  {}\mRightarrow{}  a=m=b  {}\mRightarrow{}  a'=m'=b'  {}\mRightarrow{}  aa'  \mcong{}  bb'  {}\mRightarrow{}  c-m'-m)



Date html generated: 2020_05_20-AM-10_33_33
Last ObjectModification: 2019_12_03-AM-09_50_54

Theory : euclidean!plane!geometry


Home Index