Nuprl Lemma : left-convex

g:EuclideanPlane. ∀a,b,x,y:Point.  (x leftof ab  (B(bxy) ∨ (B(byx) ∧ b))  leftof ab)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-between: B(abc) geo-left: leftof bc geo-sep: b geo-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: and: P ∧ Q geo-between: B(abc) geo-colinear: Colinear(a;b;c) not: ¬A euclidean-plane: EuclideanPlane cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False select: L[n] cons: [a b] subtract: m geo-lsep: bc stable: Stable{P} geo-eq: a ≡ b iff: ⇐⇒ Q l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True ge: i ≥  append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] rev_implies:  Q

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,x,y:Point.    (x  leftof  ab  {}\mRightarrow{}  (B(bxy)  \mvee{}  (B(byx)  \mwedge{}  y  \#  b))  {}\mRightarrow{}  y  leftof  ab)



Date html generated: 2020_05_20-AM-09_48_04
Last ObjectModification: 2019_11_13-PM-03_27_59

Theory : euclidean!plane!geometry


Home Index