Nuprl Lemma : mk-complete-pgeo_wf
∀[pg:ProjectivePlaneStructure]. ∀[p:Point].  (mk-complete-pgeo(pg;p) ∈ ProjectivePlaneStructureComplete)
Proof
Definitions occuring in Statement : 
mk-complete-pgeo: mk-complete-pgeo(pg;p), 
projective-plane-structure-complete: ProjectivePlaneStructureComplete, 
projective-plane-structure: ProjectivePlaneStructure, 
pgeo-point: Point, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
mk-complete-pgeo: mk-complete-pgeo(pg;p), 
projective-plane-structure-complete: ProjectivePlaneStructureComplete, 
record+: record+, 
record-update: r[x := v], 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
sq_type: SQType(T), 
guard: {T}, 
record-select: r.x, 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
projective-plane-structure: ProjectivePlaneStructure, 
eq_atom: x =a y, 
prop: ℙ, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
pgeo-lpsep: a ≠ b, 
pgeo-psep: a ≠ b, 
pgeo-incident: a I b, 
pgeo-lsep: l ≠ m, 
pgeo-line: Line, 
pgeo-point: Point, 
pgeo-plsep: pgeo-plsep(p; a; b), 
record: record(x.T[x]), 
pgeo-primitives: ProjGeomPrimitives, 
pgeo-peq: a ≡ b
Latex:
\mforall{}[pg:ProjectivePlaneStructure].  \mforall{}[p:Point].
    (mk-complete-pgeo(pg;p)  \mmember{}  ProjectivePlaneStructureComplete)
Date html generated:
2020_05_20-AM-10_36_42
Last ObjectModification:
2019_12_03-AM-09_49_31
Theory : euclidean!plane!geometry
Home
Index