Nuprl Lemma : mk-complete-pgeo_wf
∀[pg:ProjectivePlaneStructure]. ∀[p:Point].  (mk-complete-pgeo(pg;p) ∈ ProjectivePlaneStructureComplete)
Proof
Definitions occuring in Statement : 
mk-complete-pgeo: mk-complete-pgeo(pg;p)
, 
projective-plane-structure-complete: ProjectivePlaneStructureComplete
, 
projective-plane-structure: ProjectivePlaneStructure
, 
pgeo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
mk-complete-pgeo: mk-complete-pgeo(pg;p)
, 
projective-plane-structure-complete: ProjectivePlaneStructureComplete
, 
record+: record+, 
record-update: r[x := v]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
record-select: r.x
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
projective-plane-structure: ProjectivePlaneStructure
, 
eq_atom: x =a y
, 
prop: ℙ
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
pgeo-lpsep: a ≠ b
, 
pgeo-psep: a ≠ b
, 
pgeo-incident: a I b
, 
pgeo-lsep: l ≠ m
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
pgeo-plsep: pgeo-plsep(p; a; b)
, 
record: record(x.T[x])
, 
pgeo-primitives: ProjGeomPrimitives
, 
pgeo-peq: a ≡ b
Latex:
\mforall{}[pg:ProjectivePlaneStructure].  \mforall{}[p:Point].
    (mk-complete-pgeo(pg;p)  \mmember{}  ProjectivePlaneStructureComplete)
Date html generated:
2020_05_20-AM-10_36_42
Last ObjectModification:
2019_12_03-AM-09_49_31
Theory : euclidean!plane!geometry
Home
Index