Nuprl Lemma : mk-eu-prim_wf

[P:Type]. ∀[O:P ⟶ P ⟶ P ⟶ P ⟶ ℙ]. ∀[L:P ⟶ P ⟶ P ⟶ ℙ].  (Point=P O=O Left=L ∈ GeometryPrimitives)


Proof




Definitions occuring in Statement :  mk-eu-prim: mk-eu-prim geo-primitives: GeometryPrimitives uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-eu-prim: mk-eu-prim geo-primitives: GeometryPrimitives geo-point: Point record+: record+ record-update: r[x := v] record: record(x.T[x]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x top: Top eq_atom: =a y bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False prop:

Latex:
\mforall{}[P:Type].  \mforall{}[O:P  {}\mrightarrow{}  P  {}\mrightarrow{}  P  {}\mrightarrow{}  P  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[L:P  {}\mrightarrow{}  P  {}\mrightarrow{}  P  {}\mrightarrow{}  \mBbbP{}].
    (Point=P
      O=O
      Left=L  \mmember{}  GeometryPrimitives)



Date html generated: 2020_05_20-AM-09_41_11
Last ObjectModification: 2019_12_11-AM-09_44_08

Theory : euclidean!plane!geometry


Home Index