Nuprl Lemma : not-geo-lt-points

g:EuclideanPlane. ∀p,q:{p:Point| B(OXp)} .  p < ⇐⇒ q ≤ p)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-le: p ≤ q geo-X: X geo-O: O euclidean-plane: EuclideanPlane geo-between: B(abc) geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q not: ¬A set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry subtype_rel: A ⊆B prop: false: False rev_implies:  Q guard: {T} uimplies: supposing a euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T exists: x:A. B[x] l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) select: L[n] cons: [a b] cand: c∧ B less_than: a < b true: True ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) subtract: m append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k stable: Stable{P} basic-geometry-: BasicGeometry- geo-eq: a ≡ b geo-length-type: Length quotient: x,y:A//B[x; y]

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p,q:\{p:Point|  B(OXp)\}  .    (\mneg{}p  <  q  \mLeftarrow{}{}\mRightarrow{}  q  \mleq{}  p)



Date html generated: 2020_05_20-AM-10_00_14
Last ObjectModification: 2020_01_13-PM-03_43_19

Theory : euclidean!plane!geometry


Home Index