Nuprl Lemma : p9-tarski-aux
∀e:HeytingGeometry. ∀a,b,c:Point.  (a # bc 
⇒ ab ≅ cb 
⇒ (∃x:Point. a=x=c))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-midpoint: a=m=b
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
isosceles-mid-exists
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  ab  \mcong{}  cb  {}\mRightarrow{}  (\mexists{}x:Point.  a=x=c))
Date html generated:
2018_05_22-PM-00_21_01
Last ObjectModification:
2018_05_12-AM-10_02_49
Theory : euclidean!plane!geometry
Home
Index