Nuprl Lemma : parallelogram-construction
∀e:EuclideanPlane. ∀a,b,c,x,y:Point.
  (a # bc
  
⇒ a-x-b
  
⇒ a-y-c
  
⇒ (∃t:Point
       (geo-parallel-points(e;b;x;y;t)
       ∧ (¬¬((a leftof bc 
⇒ (t leftof ac ∧ t leftof bc)) ∧ (a leftof cb 
⇒ (t leftof ca ∧ t leftof cb)))))))
Proof
Definitions occuring in Statement : 
geo-parallel-points: geo-parallel-points(e;a;b;c;d)
, 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-lsep: a # bc
, 
geo-left: a leftof bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
not: ¬A
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
guard: {T}
, 
uimplies: b supposing a
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y:Point.
    (a  \#  bc
    {}\mRightarrow{}  a-x-b
    {}\mRightarrow{}  a-y-c
    {}\mRightarrow{}  (\mexists{}t:Point
              (geo-parallel-points(e;b;x;y;t)
              \mwedge{}  (\mneg{}\mneg{}((a  leftof  bc  {}\mRightarrow{}  (t  leftof  ac  \mwedge{}  t  leftof  bc))
                  \mwedge{}  (a  leftof  cb  {}\mRightarrow{}  (t  leftof  ca  \mwedge{}  t  leftof  cb)))))))
Date html generated:
2020_05_20-AM-10_44_35
Last ObjectModification:
2020_01_13-PM-05_38_27
Theory : euclidean!plane!geometry
Home
Index