Nuprl Definition : pgeo-finite-plane

pgeo-finite-plane(pg) ==  ((∃p_n:ℕPoint ~ ℕp_n) ∧ (∃l_n:ℕLine ~ ℕl_n)) ∧ (∀p:Point. ∀l:Line.  Dec(p ≠ l))



Definitions occuring in Statement :  pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point equipollent: B int_seg: {i..j-} nat: decidable: Dec(P) all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q natural_number: $n
Definitions occuring in definition :  and: P ∧ Q exists: x:A. B[x] nat: equipollent: B int_seg: {i..j-} natural_number: $n pgeo-point: Point all: x:A. B[x] pgeo-line: Line decidable: Dec(P) pgeo-plsep: a ≠ b
FDL editor aliases :  pgeo-finite-plane

Latex:
pgeo-finite-plane(pg)  ==
    ((\mexists{}p$_{n}$:\mBbbN{}.  Point  \msim{}  \mBbbN{}p$_{n}$)  \mwedge{}  (\mexists{}l$_{n}\000C$:\mBbbN{}.  Line  \msim{}  \mBbbN{}l$_{n}$))  \mwedge{}  (\mforall{}p:Point.  \mforall{}l:Line.    Dec(p  \mneq{}  l))



Date html generated: 2018_05_22-PM-00_59_20
Last ObjectModification: 2018_01_10-AM-09_56_32

Theory : euclidean!plane!geometry


Home Index