Nuprl Lemma : pgeo-meet_wf

g:ProjectivePlaneStructure. ∀l,m:Line. ∀s:l ≠ m.  (l ∧ m ∈ {p:Point| l ∧ m} )


Proof




Definitions occuring in Statement :  pgeo-meet: l ∧ m projective-plane-structure: ProjectivePlaneStructure pgeo-lsep: l ≠ m pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T pgeo-meet: l ∧ m uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q prop: projective-plane-structure: ProjectivePlaneStructure record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt or: P ∨ Q implies:  Q exists: x:A. B[x] uimplies: supposing a top: Top

Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}l,m:Line.  \mforall{}s:l  \mneq{}  m.    (l  \mwedge{}  m  \mmember{}  \{p:Point|  p  I  l  \mwedge{}  p  I  m\}  )



Date html generated: 2020_05_20-AM-10_36_56
Last ObjectModification: 2019_12_03-AM-09_49_50

Theory : euclidean!plane!geometry


Home Index