Nuprl Lemma : pgeo-three-points_wf
∀g:ProjectivePlaneStructure. ∀l:Line.
  (pgeo-three-point-axiom(l) ∈ ∃a,b,c:Point. (a I l ∧ b I l ∧ c I l ∧ a ≠ b ∧ b ≠ c ∧ c ≠ a))
Proof
Definitions occuring in Statement : 
pgeo-three-points: pgeo-three-point-axiom(l)
, 
projective-plane-structure: ProjectivePlaneStructure
, 
pgeo-psep: a ≠ b
, 
pgeo-incident: a I b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
pgeo-three-points: pgeo-three-point-axiom(l)
, 
projective-plane-structure: ProjectivePlaneStructure
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}l:Line.
    (pgeo-three-point-axiom(l)  \mmember{}  \mexists{}a,b,c:Point.  (a  I  l  \mwedge{}  b  I  l  \mwedge{}  c  I  l  \mwedge{}  a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  c  \mneq{}  a))
Date html generated:
2020_05_20-AM-10_37_10
Last ObjectModification:
2019_12_03-AM-09_49_07
Theory : euclidean!plane!geometry
Home
Index