Nuprl Lemma : point-exists-axiom_wf
∀[g:ProjectivePlaneStructureComplete]. (point-exists-axiom(g) ∈ ∃p:Point. p ≡ p)
Proof
Definitions occuring in Statement : 
point-exists-axiom: point-exists-axiom(g)
, 
projective-plane-structure-complete: ProjectivePlaneStructureComplete
, 
pgeo-peq: a ≡ b
, 
pgeo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
point-exists-axiom: point-exists-axiom(g)
, 
projective-plane-structure-complete: ProjectivePlaneStructureComplete
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Latex:
\mforall{}[g:ProjectivePlaneStructureComplete].  (point-exists-axiom(g)  \mmember{}  \mexists{}p:Point.  p  \mequiv{}  p)
Date html generated:
2020_05_20-AM-10_37_24
Last ObjectModification:
2019_12_03-AM-09_48_50
Theory : euclidean!plane!geometry
Home
Index