Nuprl Lemma : point-exists-axiom_wf

[g:ProjectivePlaneStructureComplete]. (point-exists-axiom(g) ∈ ∃p:Point. p ≡ p)


Proof




Definitions occuring in Statement :  point-exists-axiom: point-exists-axiom(g) projective-plane-structure-complete: ProjectivePlaneStructureComplete pgeo-peq: a ≡ b pgeo-point: Point uall: [x:A]. B[x] exists: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T point-exists-axiom: point-exists-axiom(g) projective-plane-structure-complete: ProjectivePlaneStructureComplete record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop:

Latex:
\mforall{}[g:ProjectivePlaneStructureComplete].  (point-exists-axiom(g)  \mmember{}  \mexists{}p:Point.  p  \mequiv{}  p)



Date html generated: 2020_05_20-AM-10_37_24
Last ObjectModification: 2019_12_03-AM-09_48_50

Theory : euclidean!plane!geometry


Home Index