Nuprl Definition : right-angles-congruent-axiom

right-angles-congruent-axiom(e) ==
  ∀a,b,c,x,y,z:Point.  (((Rabc ∧ Rxyz) ∧ (x ≠ y ∧ y ≠ z) ∧ a ≠ b ∧ b ≠ c)  abc ≅a xyz)



Definitions occuring in Statement :  geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions occuring in definition :  geo-sep: a ≠ b and: P ∧ Q implies:  Q geo-point: Point all: x:A. B[x]
FDL editor aliases :  right-angles-congruent-axiom

Latex:
right-angles-congruent-axiom(e)  ==
    \mforall{}a,b,c,x,y,z:Point.    (((Rabc  \mwedge{}  Rxyz)  \mwedge{}  (x  \mneq{}  y  \mwedge{}  y  \mneq{}  z)  \mwedge{}  a  \mneq{}  b  \mwedge{}  b  \mneq{}  c)  {}\mRightarrow{}  abc  \00D0\msuba{}  xyz)



Date html generated: 2017_10_02-PM-03_27_18
Last ObjectModification: 2017_08_23-PM-03_37_30

Theory : euclidean!plane!geometry


Home Index