Nuprl Definition : right-angles-congruent-axiom
right-angles-congruent-axiom(e) ==
  ∀a,b,c,x,y,z:Point.  (((Rabc ∧ Rxyz) ∧ (x ≠ y ∧ y ≠ z) ∧ a ≠ b ∧ b ≠ c) 
⇒ abc ≅a xyz)
Definitions occuring in Statement : 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions occuring in definition : 
geo-sep: a ≠ b
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
geo-point: Point
, 
all: ∀x:A. B[x]
FDL editor aliases : 
right-angles-congruent-axiom
Latex:
right-angles-congruent-axiom(e)  ==
    \mforall{}a,b,c,x,y,z:Point.    (((Rabc  \mwedge{}  Rxyz)  \mwedge{}  (x  \mneq{}  y  \mwedge{}  y  \mneq{}  z)  \mwedge{}  a  \mneq{}  b  \mwedge{}  b  \mneq{}  c)  {}\mRightarrow{}  abc  \00D0\msuba{}  xyz)
Date html generated:
2017_10_02-PM-03_27_18
Last ObjectModification:
2017_08_23-PM-03_37_30
Theory : euclidean!plane!geometry
Home
Index