Nuprl Lemma : sq_stable-geo-axioms-if

[g:GeometryPrimitives]
  ((∀a,b,c:Point.  SqStable(B(abc)))
   (∀a,b,c,d:Point.  SqStable(ab ≅ cd))
   (∀a,b,c,d:Point.  SqStable(ab>cd))
   (∀a,b,c:Point.  (SqStable(a bc) ∧ (BasicGeometryAxioms(g)  leftof bc  leftof cb))))
   SqStable(BasicGeometryAxioms(g)))


Proof




Definitions occuring in Statement :  basic-geo-axioms: BasicGeometryAxioms(g) geo-congruent: ab ≅ cd geo-between: B(abc) geo-lsep: bc geo-left: leftof bc geo-gt-prim: ab>cd geo-primitives: GeometryPrimitives geo-point: Point sq_stable: SqStable(P) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q sq_stable: SqStable(P) member: t ∈ T prop: all: x:A. B[x] and: P ∧ Q not: ¬A false: False squash: T basic-geo-axioms: BasicGeometryAxioms(g) geo-ge: ab ≥ cd so_lambda: λ2x.t[x] so_apply: x[s] geo-between: B(abc) geo-congruent: ab ≅ cd guard: {T} geo-sep: b geo-lsep: bc or: P ∨ Q

Latex:
\mforall{}[g:GeometryPrimitives]
    ((\mforall{}a,b,c:Point.    SqStable(B(abc)))
    {}\mRightarrow{}  (\mforall{}a,b,c,d:Point.    SqStable(ab  \mcong{}  cd))
    {}\mRightarrow{}  (\mforall{}a,b,c,d:Point.    SqStable(ab>cd))
    {}\mRightarrow{}  (\mforall{}a,b,c:Point.    (SqStable(a  \#  bc)  \mwedge{}  (BasicGeometryAxioms(g)  {}\mRightarrow{}  a  leftof  bc  {}\mRightarrow{}  (\mneg{}a  leftof  cb))))
    {}\mRightarrow{}  SqStable(BasicGeometryAxioms(g)))



Date html generated: 2020_05_20-AM-09_41_27
Last ObjectModification: 2020_03_14-AM-09_31_03

Theory : euclidean!plane!geometry


Home Index