Nuprl Lemma : sq_stable-geo-axioms-if
∀[g:GeometryPrimitives]
  ((∀a,b,c:Point.  SqStable(B(abc)))
  
⇒ (∀a,b,c,d:Point.  SqStable(ab ≅ cd))
  
⇒ (∀a,b,c,d:Point.  SqStable(ab>cd))
  
⇒ (∀a,b,c:Point.  (SqStable(a # bc) ∧ (BasicGeometryAxioms(g) 
⇒ a leftof bc 
⇒ (¬a leftof cb))))
  
⇒ SqStable(BasicGeometryAxioms(g)))
Proof
Definitions occuring in Statement : 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
geo-congruent: ab ≅ cd
, 
geo-between: B(abc)
, 
geo-lsep: a # bc
, 
geo-left: a leftof bc
, 
geo-gt-prim: ab>cd
, 
geo-primitives: GeometryPrimitives
, 
geo-point: Point
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
member: t ∈ T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
squash: ↓T
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
geo-ge: ab ≥ cd
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
geo-between: B(abc)
, 
geo-congruent: ab ≅ cd
, 
guard: {T}
, 
geo-sep: a # b
, 
geo-lsep: a # bc
, 
or: P ∨ Q
Latex:
\mforall{}[g:GeometryPrimitives]
    ((\mforall{}a,b,c:Point.    SqStable(B(abc)))
    {}\mRightarrow{}  (\mforall{}a,b,c,d:Point.    SqStable(ab  \mcong{}  cd))
    {}\mRightarrow{}  (\mforall{}a,b,c,d:Point.    SqStable(ab>cd))
    {}\mRightarrow{}  (\mforall{}a,b,c:Point.    (SqStable(a  \#  bc)  \mwedge{}  (BasicGeometryAxioms(g)  {}\mRightarrow{}  a  leftof  bc  {}\mRightarrow{}  (\mneg{}a  leftof  cb))))
    {}\mRightarrow{}  SqStable(BasicGeometryAxioms(g)))
Date html generated:
2020_05_20-AM-09_41_27
Last ObjectModification:
2020_03_14-AM-09_31_03
Theory : euclidean!plane!geometry
Home
Index