Nuprl Lemma : symmetric-point-construction1
∀e:BasicGeometry. ∀a:Point. ∀p:{p:Point| a # p} .  (∃p':Point [p=a=p'])
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-midpoint: a=m=b
, 
geo-sep: a # b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
geo-midpoint: a=m=b
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a:Point.  \mforall{}p:\{p:Point|  a  \#  p\}  .    (\mexists{}p':Point  [p=a=p'])
Date html generated:
2020_05_20-AM-09_49_46
Last ObjectModification:
2020_01_27-PM-10_03_36
Theory : euclidean!plane!geometry
Home
Index