Nuprl Definition : word-equiv

word-equiv(X;w1;w2) ==  ∃w:(X X) List. ((λx,y. word-rel(X;x;y)^* w1 w) ∧ x,y. word-rel(X;x;y)^* w2 w))



Definitions occuring in Statement :  word-rel: word-rel(X;w1;w2) transitive-reflexive-closure: R^* list: List exists: x:A. B[x] and: P ∧ Q apply: a lambda: λx.A[x] union: left right
Definitions occuring in definition :  word-rel: word-rel(X;w1;w2) lambda: λx.A[x] union: left right list: List transitive-reflexive-closure: R^* apply: a and: P ∧ Q exists: x:A. B[x]
FDL editor aliases :  word-equiv

Latex:
word-equiv(X;w1;w2)  ==    \mexists{}w:(X  +  X)  List.  ((\mlambda{}x,y.  word-rel(X;x;y)\^{}*  w1  w)  \mwedge{}  (\mlambda{}x,y.  word-rel(X;x;y)\^{}*  \000Cw2  w))



Date html generated: 2017_01_19-PM-02_49_53
Last ObjectModification: 2017_01_14-PM-05_10_39

Theory : free!groups


Home Index