Nuprl Definition : hyp-dist

hyp (x,y) ==  inv-cosh((rsqrt(r1 x^2) rsqrt(r1 y^2)) x ⋅ y)



Definitions occuring in Statement :  rv-ip: x ⋅ y inv-cosh: inv-cosh(x) rsqrt: rsqrt(x) rsub: y rmul: b radd: b int-to-real: r(n) natural_number: $n
Definitions occuring in definition :  inv-cosh: inv-cosh(x) rsub: y rmul: b rsqrt: rsqrt(x) radd: b int-to-real: r(n) natural_number: $n rv-ip: x ⋅ y
FDL editor aliases :  hyp-dist

Latex:
hyp  (x,y)  ==    inv-cosh((rsqrt(r1  +  x\^{}2)  *  rsqrt(r1  +  y\^{}2))  -  x  \mcdot{}  y)



Date html generated: 2017_10_05-AM-00_29_10
Last ObjectModification: 2017_06_23-PM-05_49_28

Theory : inner!product!spaces


Home Index