Nuprl Definition : sg-subgroup

sg-subgroup(sg;x.P[x]) ==  P[1] ∧ (∀x:Point. (P[x]  P[x^-1])) ∧ (∀x,y:Point.  (P[x]  P[y]  P[(x y)]))



Definitions occuring in Statement :  sg-op: (x y) sg-inv: x^-1 sg-id: 1 ss-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions occuring in definition :  sg-op: (x y) implies:  Q ss-point: Point all: x:A. B[x] sg-inv: x^-1 and: P ∧ Q sg-id: 1
FDL editor aliases :  sg-subgroup

Latex:
sg-subgroup(sg;x.P[x])  ==
    P[1]  \mwedge{}  (\mforall{}x:Point.  (P[x]  {}\mRightarrow{}  P[x\^{}-1]))  \mwedge{}  (\mforall{}x,y:Point.    (P[x]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  P[(x  y)]))



Date html generated: 2016_11_08-AM-09_12_29
Last ObjectModification: 2016_11_03-PM-00_17_40

Theory : inner!product!spaces


Home Index