Nuprl Definition : bounded-lattice-hom
Hom(l1;l2) == {f:Hom(l1;l2)| ((f 0) = 0 ∈ Point(l2)) ∧ ((f 1) = 1 ∈ Point(l2))}
Definitions occuring in Statement :
lattice-0: 0
,
lattice-1: 1
,
lattice-hom: Hom(l1;l2)
,
lattice-point: Point(l)
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
apply: f a
,
equal: s = t ∈ T
Definitions occuring in definition :
set: {x:A| B[x]}
,
lattice-hom: Hom(l1;l2)
,
and: P ∧ Q
,
lattice-0: 0
,
equal: s = t ∈ T
,
lattice-point: Point(l)
,
apply: f a
,
lattice-1: 1
FDL editor aliases :
bounded-lattice-hom
Latex:
Hom(l1;l2) == \{f:Hom(l1;l2)| ((f 0) = 0) \mwedge{} ((f 1) = 1)\}
Date html generated:
2016_05_18-AM-11_20_33
Last ObjectModification:
2015_10_06-PM-01_45_35
Theory : lattices
Home
Index