Nuprl Definition : constrained-antichain-lattice

constrained-antichain-lattice(T;eq;P) ==
  {points={ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;x.P x)} ;
   meet=λac1,ac2. glb(P;ac1;ac2);
   join=λac1,ac2. lub(P;ac1;ac2);
   0={};
   1={{}}}



Definitions occuring in Statement :  mk-bounded-distributive-lattice: mk-bounded-distributive-lattice fset-constrained-ac-glb: glb(P;ac1;ac2) fset-constrained-ac-lub: lub(P;ac1;ac2) fset-antichain: fset-antichain(eq;ac) fset-all: fset-all(s;x.P[x]) empty-fset: {} fset-singleton: {x} fset: fset(T) assert: b and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x]
Definitions occuring in definition :  mk-bounded-distributive-lattice: mk-bounded-distributive-lattice set: {x:A| B[x]}  fset: fset(T) and: P ∧ Q assert: b fset-antichain: fset-antichain(eq;ac) fset-all: fset-all(s;x.P[x]) apply: a fset-constrained-ac-glb: glb(P;ac1;ac2) lambda: λx.A[x] fset-constrained-ac-lub: lub(P;ac1;ac2) fset-singleton: {x} empty-fset: {}
FDL editor aliases :  constrained-antichain-lattice

Latex:
constrained-antichain-lattice(T;eq;P)  ==
    \{points=\{ac:fset(fset(T))|  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;x.P  x)\}  ;
      meet=\mlambda{}ac1,ac2.  glb(P;ac1;ac2);
      join=\mlambda{}ac1,ac2.  lub(P;ac1;ac2);
      0=\{\};
      1=\{\{\}\}\}



Date html generated: 2016_05_18-AM-11_28_54
Last ObjectModification: 2015_10_06-PM-06_52_15

Theory : lattices


Home Index