Nuprl Definition : general-bounded-lattice-structure
A generalized bounded lattice structure includes
all the components of a bounded lattice, and, in addition, 
a relation E on the points of the lattice.
When we define a generalized bounded lattice, E will be an
equivalence relation on the points, and the lattice axioms
will hold upto E-equivalence.⋅
GeneralBoundedLatticeStructure ==
  "Point":Type
  "meet":self."Point" ⟶ self."Point" ⟶ self."Point"
  "join":self."Point" ⟶ self."Point" ⟶ self."Point"
  "1":self."Point"
  "0":self."Point"
  "E":self."Point" ⟶ self."Point" ⟶ ℙ
Definitions occuring in Statement : 
top: Top
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
token: "$token"
, 
universe: Type
, 
record-select: r.x
, 
record+: record+, 
record: record(x.T[x])
Definitions occuring in definition : 
record+: record+, 
record: record(x.T[x])
, 
top: Top
, 
universe: Type
, 
function: x:A ⟶ B[x]
, 
record-select: r.x
, 
token: "$token"
, 
prop: ℙ
FDL editor aliases : 
general-bounded-lattice-structure
Latex:
GeneralBoundedLatticeStructure  ==
    "Point":Type
    "meet":self."Point"  {}\mrightarrow{}  self."Point"  {}\mrightarrow{}  self."Point"
    "join":self."Point"  {}\mrightarrow{}  self."Point"  {}\mrightarrow{}  self."Point"
    "1":self."Point"
    "0":self."Point"
    "E":self."Point"  {}\mrightarrow{}  self."Point"  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2016_07_08-PM-06_30_38
Last ObjectModification:
2016_01_13-PM-04_00_53
Theory : lattices
Home
Index