Nuprl Definition : free-1-iso

free-1-iso(s;K) ==  <λx.Σ(p∈x). let k,s in 1, λk.{<1, s>}, λb.Ax, λa.Ax>



Definitions occuring in Statement :  one-dim-vs: one-dim-vs(K) vs-mul: x infix_ap: y apply: a lambda: λx.A[x] spread: spread def pair: <a, b> axiom: Ax rng_one: 1 rng_times: * rng_zero: 0 rng_plus: +r bag-summation: Σ(x∈b). f[x] single-bag: {x}
Definitions occuring in definition :  bag-summation: Σ(x∈b). f[x] rng_zero: 0 infix_ap: y rng_plus: +r spread: spread def vs-mul: x one-dim-vs: one-dim-vs(K) single-bag: {x} apply: a rng_times: * rng_one: 1 pair: <a, b> lambda: λx.A[x] axiom: Ax
FDL editor aliases :  free-1-iso

Latex:
free-1-iso(s;K)  ==    <\mlambda{}x.\mSigma{}(p\mmember{}x).  let  k,s  =  p  in  k  *  1,  \mlambda{}k.\{<*  k  1,  s>\},  \mlambda{}b.Ax,  \mlambda{}a.Ax>



Date html generated: 2019_10_31-AM-06_30_53
Last ObjectModification: 2019_08_02-PM-04_35_22

Theory : linear!algebra


Home Index