Nuprl Definition : fs-predicate

fs-predicate(K;S;p.P[p];f) ==  ↓∃b:basic-formal-sum(K;S). ((f b ∈ formal-sum(K;S)) ∧ bfs-predicate(K;S;p.P[p];b))



Definitions occuring in Statement :  formal-sum: formal-sum(K;S) bfs-predicate: bfs-predicate(K;S;p.P[p];b) basic-formal-sum: basic-formal-sum(K;S) exists: x:A. B[x] squash: T and: P ∧ Q equal: t ∈ T
Definitions occuring in definition :  squash: T exists: x:A. B[x] basic-formal-sum: basic-formal-sum(K;S) and: P ∧ Q equal: t ∈ T formal-sum: formal-sum(K;S) bfs-predicate: bfs-predicate(K;S;p.P[p];b)
FDL editor aliases :  fs-predicate

Latex:
fs-predicate(K;S;p.P[p];f)  ==    \mdownarrow{}\mexists{}b:basic-formal-sum(K;S).  ((f  =  b)  \mwedge{}  bfs-predicate(K;S;p.P[p];b))



Date html generated: 2019_10_31-AM-06_28_56
Last ObjectModification: 2019_08_19-AM-10_50_59

Theory : linear!algebra


Home Index