Nuprl Definition : fs-predicate
fs-predicate(K;S;p.P[p];f) ==  ↓∃b:basic-formal-sum(K;S). ((f = b ∈ formal-sum(K;S)) ∧ bfs-predicate(K;S;p.P[p];b))
Definitions occuring in Statement : 
formal-sum: formal-sum(K;S)
, 
bfs-predicate: bfs-predicate(K;S;p.P[p];b)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions occuring in definition : 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
and: P ∧ Q
, 
equal: s = t ∈ T
, 
formal-sum: formal-sum(K;S)
, 
bfs-predicate: bfs-predicate(K;S;p.P[p];b)
FDL editor aliases : 
fs-predicate
Latex:
fs-predicate(K;S;p.P[p];f)  ==    \mdownarrow{}\mexists{}b:basic-formal-sum(K;S).  ((f  =  b)  \mwedge{}  bfs-predicate(K;S;p.P[p];b))
Date html generated:
2019_10_31-AM-06_28_56
Last ObjectModification:
2019_08_19-AM-10_50_59
Theory : linear!algebra
Home
Index