Nuprl Definition : short-exact
short-exact{i:l}(K) ==
  {s:A:VectorSpace(K) × B:VectorSpace(K) × C:VectorSpace(K) × A ⟶ B × B ⟶ C| 
   let A,B,C,f,g = s in is-short-exact(A;B;C;f;g)} 
Definitions occuring in Statement : 
is-short-exact: is-short-exact(A;B;C;f;g)
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e]
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
Definitions occuring in definition : 
set: {x:A| B[x]} 
, 
vector-space: VectorSpace(K)
, 
product: x:A × B[x]
, 
vs-map: A ⟶ B
, 
spreadn: let a,b,c,d,e = u in v[a; b; c; d; e]
, 
is-short-exact: is-short-exact(A;B;C;f;g)
FDL editor aliases : 
short-exact
Latex:
short-exact\{i:l\}(K)  ==
    \{s:A:VectorSpace(K)  \mtimes{}  B:VectorSpace(K)  \mtimes{}  C:VectorSpace(K)  \mtimes{}  A  {}\mrightarrow{}  B  \mtimes{}  B  {}\mrightarrow{}  C| 
      let  A,B,C,f,g  =  s  in  is-short-exact(A;B;C;f;g)\} 
Date html generated:
2019_10_31-AM-06_27_43
Last ObjectModification:
2019_08_21-PM-06_33_09
Theory : linear!algebra
Home
Index