Nuprl Definition : short-exact

short-exact{i:l}(K) ==
  {s:A:VectorSpace(K) × B:VectorSpace(K) × C:VectorSpace(K) × A ⟶ B × B ⟶ C| 
   let A,B,C,f,g in is-short-exact(A;B;C;f;g)} 



Definitions occuring in Statement :  is-short-exact: is-short-exact(A;B;C;f;g) vs-map: A ⟶ B vector-space: VectorSpace(K) spreadn: let a,b,c,d,e in v[a; b; c; d; e] set: {x:A| B[x]}  product: x:A × B[x]
Definitions occuring in definition :  set: {x:A| B[x]}  vector-space: VectorSpace(K) product: x:A × B[x] vs-map: A ⟶ B spreadn: let a,b,c,d,e in v[a; b; c; d; e] is-short-exact: is-short-exact(A;B;C;f;g)
FDL editor aliases :  short-exact

Latex:
short-exact\{i:l\}(K)  ==
    \{s:A:VectorSpace(K)  \mtimes{}  B:VectorSpace(K)  \mtimes{}  C:VectorSpace(K)  \mtimes{}  A  {}\mrightarrow{}  B  \mtimes{}  B  {}\mrightarrow{}  C| 
      let  A,B,C,f,g  =  s  in  is-short-exact(A;B;C;f;g)\} 



Date html generated: 2019_10_31-AM-06_27_43
Last ObjectModification: 2019_08_21-PM-06_33_09

Theory : linear!algebra


Home Index