Nuprl Definition : presheaf-term

{X ⊢ _:A} ==
  {u:I:cat-ob(C) ⟶ a:X(I) ⟶ A(a)| 
   ∀I,J:cat-ob(C). ∀f:cat-arrow(C) I. ∀a:X(I).  ((u f) (u f(a)) ∈ A(f(a)))} 



Definitions occuring in Statement :  presheaf-type-ap-morph: (u f) presheaf-type-at: A(a) psc-restriction: f(s) I_set: A(I) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) all: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] cat-ob: cat-ob(C) cat-arrow: cat-arrow(C) all: x:A. B[x] I_set: A(I) equal: t ∈ T presheaf-type-at: A(a) presheaf-type-ap-morph: (u f) apply: a psc-restriction: f(s)
FDL editor aliases :  presheaf-term

Latex:
\{X  \mvdash{}  \_:A\}  ==
    \{u:I:cat-ob(C)  {}\mrightarrow{}  a:X(I)  {}\mrightarrow{}  A(a)| 
      \mforall{}I,J:cat-ob(C).  \mforall{}f:cat-arrow(C)  J  I.  \mforall{}a:X(I).    ((u  I  a  a  f)  =  (u  J  f(a)))\} 



Date html generated: 2018_05_22-PM-10_03_50
Last ObjectModification: 2018_02_21-AM-11_52_56

Theory : presheaf!models!of!type!theory


Home Index