Nuprl Definition : DegreeExists

DegreeExists(n) ==
  ∃ind:sphere-map(n) ⟶ ℤ
   ((∀f,g:sphere-map(n).  (sphere-map-eq(n;f;g)  ((ind f) (ind g) ∈ ℤ)))
   ∧ (∀p:S(n). ((ind const-sphere-map(p)) 0 ∈ ℤ))
   ∧ ((ind id-sphere-map()) 1 ∈ ℤ))



Definitions occuring in Statement :  id-sphere-map: id-sphere-map() const-sphere-map: const-sphere-map(p) sphere-map-eq: sphere-map-eq(n;f;g) sphere-map: sphere-map(n) real-unit-sphere: S(n) all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  exists: x:A. B[x] function: x:A ⟶ B[x] sphere-map: sphere-map(n) implies:  Q sphere-map-eq: sphere-map-eq(n;f;g) and: P ∧ Q all: x:A. B[x] real-unit-sphere: S(n) const-sphere-map: const-sphere-map(p) equal: t ∈ T int: apply: a id-sphere-map: id-sphere-map() natural_number: $n
FDL editor aliases :  DegreeExists

Latex:
DegreeExists(n)  ==
    \mexists{}ind:sphere-map(n)  {}\mrightarrow{}  \mBbbZ{}
      ((\mforall{}f,g:sphere-map(n).    (sphere-map-eq(n;f;g)  {}\mRightarrow{}  ((ind  f)  =  (ind  g))))
      \mwedge{}  (\mforall{}p:S(n).  ((ind  const-sphere-map(p))  =  0))
      \mwedge{}  ((ind  id-sphere-map())  =  1))



Date html generated: 2019_10_30-AM-11_30_08
Last ObjectModification: 2019_08_06-AM-11_40_19

Theory : real!vectors


Home Index