Nuprl Definition : adjacent-cubes
adjacent-cubes(k;c1;c2) ==
∃i:ℕk
((∀j:ℕk. ((¬(j = i ∈ ℤ))
⇒ (((c1- j) = (c2- j)) ∧ ((c1+ j) = (c2+ j)))))
∧ (((c1- i) = (c2+ i)) ∨ ((c2- i) = (c1+ i))))
Definitions occuring in Statement :
cube-lower: c-
,
cube-upper: c+
,
req: x = y
,
int_seg: {i..j-}
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
or: P ∨ Q
,
and: P ∧ Q
,
apply: f a
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions occuring in definition :
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
int_seg: {i..j-}
,
natural_number: $n
,
implies: P
⇒ Q
,
not: ¬A
,
equal: s = t ∈ T
,
int: ℤ
,
and: P ∧ Q
,
or: P ∨ Q
,
req: x = y
,
cube-lower: c-
,
apply: f a
,
cube-upper: c+
FDL editor aliases :
adjacent-cubes
Latex:
adjacent-cubes(k;c1;c2) ==
\mexists{}i:\mBbbN{}k
((\mforall{}j:\mBbbN{}k. ((\mneg{}(j = i)) {}\mRightarrow{} (((c1- j) = (c2- j)) \mwedge{} ((c1+ j) = (c2+ j)))))
\mwedge{} (((c1- i) = (c2+ i)) \mvee{} ((c2- i) = (c1+ i))))
Date html generated:
2019_10_30-AM-11_31_32
Last ObjectModification:
2019_09_27-PM-01_34_09
Theory : real!vectors
Home
Index