Nuprl Definition : unit-ball-approx

unit-ball-approx(n;k) ==  {x:ℕn ⟶ {-k..k 1-}| Σ((x i) (x i) i < n) ≤ (k k)} 



Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} le: A ≤ B set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] multiply: m add: m minus: -n natural_number: $n
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] int_seg: {i..j-} minus: -n add: m natural_number: $n le: A ≤ B sum: Σ(f[x] x < k) apply: a multiply: m
FDL editor aliases :  unit-ball-approx

Latex:
unit-ball-approx(n;k)  ==    \{x:\mBbbN{}n  {}\mrightarrow{}  \{-k..k  +  1\msupminus{}\}|  \mSigma{}((x  i)  *  (x  i)  |  i  <  n)  \mleq{}  (k  *  k)\} 



Date html generated: 2019_10_30-AM-11_27_58
Last ObjectModification: 2019_06_28-PM-01_56_03

Theory : real!vectors


Home Index