Nuprl Lemma : accelerate_wf

[k:ℕ+]. ∀[f:{f:ℕ+ ⟶ ℤk-regular-seq(f)} ].  (accelerate(k;f) ∈ ℝ)


Proof




Definitions occuring in Statement :  accelerate: accelerate(k;f) real: regular-int-seq: k-regular-seq(f) nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] real: subtype_rel: A ⊆B prop: and: P ∧ Q top: Top all: x:A. B[x] false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A nequal: a ≠ b ∈  nat_plus: + uimplies: supposing a has-value: (a)↓ accelerate: accelerate(k;f) member: t ∈ T uall: [x:A]. B[x] regular-int-seq: k-regular-seq(f) nat: squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q int_nzero: -o sq_type: SQType(T) decidable: Dec(P) or: P ∨ Q sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) ge: i ≥  subtract: m less_than: a < b le: A ≤ B less_than': less_than'(a;b)

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[f:\{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  k-regular-seq(f)\}  ].    (accelerate(k;f)  \mmember{}  \mBbbR{})



Date html generated: 2020_05_20-AM-10_52_55
Last ObjectModification: 2020_03_19-PM-06_34_05

Theory : reals


Home Index