Nuprl Lemma : add-ipoly-req

p,q:iMonomial() List.  ipolynomial-term(add-ipoly(p;q)) ≡ ipolynomial-term(p) (+) ipolynomial-term(q)


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 add-ipoly: add-ipoly(p;q) ipolynomial-term: ipolynomial-term(p) iMonomial: iMonomial() itermAdd: left (+) right list: List all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: req_int_terms: t1 ≡ t2 le: A ≤ B less_than': less_than'(a;b) guard: {T} decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) add-ipoly: add-ipoly(p;q) has-value: (a)↓ ifthenelse: if then else fi  btrue: tt cons: [a b] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff ipolynomial-term: ipolynomial-term(p) real_term_value: real_term_value(f;t) itermAdd: left (+) right int_term_ind: int_term_ind itermConstant: "const" rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: sq_type: SQType(T) bnot: ¬bb assert: b iMonomial: iMonomial() so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] int_nzero: -o callbyvalueall: callbyvalueall has-valueall: has-valueall(a) pi1: fst(t) nequal: a ≠ b ∈  imonomial-le: imonomial-le(m1;m2) pi2: snd(t) squash: T

Latex:
\mforall{}p,q:iMonomial()  List.
    ipolynomial-term(add-ipoly(p;q))  \mequiv{}  ipolynomial-term(p)  (+)  ipolynomial-term(q)



Date html generated: 2020_05_20-AM-10_54_13
Last ObjectModification: 2020_01_02-PM-02_09_10

Theory : reals


Home Index