Nuprl Lemma : adjacent-partition-points

[I:Interval]
  ∀[p:partition(I)]
    (((¬0 < ||p||)  r0≤right-endpoint(I) left-endpoint(I)≤partition-mesh(I;p))
    ∧ (0 < ||p||
       (r0≤p[0] left-endpoint(I)≤partition-mesh(I;p)
         ∧ (∀i:ℕ||p|| 1. r0≤p[i 1] p[i]≤partition-mesh(I;p))
         ∧ r0≤right-endpoint(I) last(p)≤partition-mesh(I;p)))) 
  supposing icompact(I)


Proof




Definitions occuring in Statement :  partition-mesh: partition-mesh(I;p) partition: partition(I) icompact: icompact(I) right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) interval: Interval rbetween: x≤y≤z rsub: y int-to-real: r(n) last: last(L) select: L[n] length: ||as|| int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a partition-mesh: partition-mesh(I;p) all: x:A. B[x] full-partition: full-partition(I;p) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q partition: partition(I) decidable: Dec(P) or: P ∨ Q false: False less_than: a < b squash: T uiff: uiff(P;Q) not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: rbetween: x≤y≤z rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B icompact: icompact(I) less_than': less_than'(a;b) nat_plus: + guard: {T} select: L[n] cons: [a b] subtract: m ge: i ≥  true: True so_apply: x[s1;s2;s3] top: Top so_lambda: so_lambda3 append: as bs subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q real: int_iseg: {i...j} so_lambda: λ2x.t[x] so_apply: x[s] last: last(L)

Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)]
        (((\mneg{}0  <  ||p||)  {}\mRightarrow{}  r0\mleq{}right-endpoint(I)  -  left-endpoint(I)\mleq{}partition-mesh(I;p))
        \mwedge{}  (0  <  ||p||
            {}\mRightarrow{}  (r0\mleq{}p[0]  -  left-endpoint(I)\mleq{}partition-mesh(I;p)
                  \mwedge{}  (\mforall{}i:\mBbbN{}||p||  -  1.  r0\mleq{}p[i  +  1]  -  p[i]\mleq{}partition-mesh(I;p))
                  \mwedge{}  r0\mleq{}right-endpoint(I)  -  last(p)\mleq{}partition-mesh(I;p)))) 
    supposing  icompact(I)



Date html generated: 2020_05_20-AM-11_37_20
Last ObjectModification: 2020_01_02-PM-01_30_05

Theory : reals


Home Index