Nuprl Lemma : adjacent-partition-points
∀[I:Interval]
  ∀[p:partition(I)]
    (((¬0 < ||p||) ⇒ r0≤right-endpoint(I) - left-endpoint(I)≤partition-mesh(I;p))
    ∧ (0 < ||p||
      ⇒ (r0≤p[0] - left-endpoint(I)≤partition-mesh(I;p)
         ∧ (∀i:ℕ||p|| - 1. r0≤p[i + 1] - p[i]≤partition-mesh(I;p))
         ∧ r0≤right-endpoint(I) - last(p)≤partition-mesh(I;p)))) 
  supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition-mesh: partition-mesh(I;p), 
partition: partition(I), 
icompact: icompact(I), 
right-endpoint: right-endpoint(I), 
left-endpoint: left-endpoint(I), 
interval: Interval, 
rbetween: x≤y≤z, 
rsub: x - y, 
int-to-real: r(n), 
last: last(L), 
select: L[n], 
length: ||as||, 
int_seg: {i..j-}, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
subtract: n - m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
partition-mesh: partition-mesh(I;p), 
all: ∀x:A. B[x], 
full-partition: full-partition(I;p), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
partition: partition(I), 
decidable: Dec(P), 
or: P ∨ Q, 
false: False, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
prop: ℙ, 
rbetween: x≤y≤z, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
icompact: icompact(I), 
less_than': less_than'(a;b), 
nat_plus: ℕ+, 
guard: {T}, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
ge: i ≥ j , 
true: True, 
so_apply: x[s1;s2;s3], 
top: Top, 
so_lambda: so_lambda3, 
append: as @ bs, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
real: ℝ, 
int_iseg: {i...j}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
last: last(L)
Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)]
        (((\mneg{}0  <  ||p||)  {}\mRightarrow{}  r0\mleq{}right-endpoint(I)  -  left-endpoint(I)\mleq{}partition-mesh(I;p))
        \mwedge{}  (0  <  ||p||
            {}\mRightarrow{}  (r0\mleq{}p[0]  -  left-endpoint(I)\mleq{}partition-mesh(I;p)
                  \mwedge{}  (\mforall{}i:\mBbbN{}||p||  -  1.  r0\mleq{}p[i  +  1]  -  p[i]\mleq{}partition-mesh(I;p))
                  \mwedge{}  r0\mleq{}right-endpoint(I)  -  last(p)\mleq{}partition-mesh(I;p)))) 
    supposing  icompact(I)
Date html generated:
2020_05_20-AM-11_37_20
Last ObjectModification:
2020_01_02-PM-01_30_05
Theory : reals
Home
Index