Nuprl Definition : bdd-diff

bdd-diff(f;g) ==  ∃B:ℕ. ∀n:ℕ+(|(f n) n| ≤ B)



Definitions occuring in Statement :  absval: |i| nat_plus: + nat: le: A ≤ B all: x:A. B[x] exists: x:A. B[x] apply: a subtract: m
Definitions occuring in definition :  exists: x:A. B[x] nat: all: x:A. B[x] nat_plus: + le: A ≤ B absval: |i| subtract: m apply: a
FDL editor aliases :  bdd-diff

Latex:
bdd-diff(f;g)  ==    \mexists{}B:\mBbbN{}.  \mforall{}n:\mBbbN{}\msupplus{}.  (|(f  n)  -  g  n|  \mleq{}  B)



Date html generated: 2016_05_18-AM-06_46_17
Last ObjectModification: 2015_09_23-AM-09_00_35

Theory : reals


Home Index