Nuprl Definition : cantor-to-interval
cantor-to-interval(a;b;f) ==  λn.eval m = 4 * n in let x,y = cantor-interval(a;b;f;cantor_cauchy(a;b;m)) in (x m) ÷ 4
Definitions occuring in Statement : 
cantor_cauchy: cantor_cauchy(a;b;k)
, 
cantor-interval: cantor-interval(a;b;f;n)
, 
callbyvalue: callbyvalue, 
apply: f a
, 
lambda: λx.A[x]
, 
spread: spread def, 
divide: n ÷ m
, 
multiply: n * m
, 
natural_number: $n
Definitions occuring in definition : 
lambda: λx.A[x]
, 
callbyvalue: callbyvalue, 
multiply: n * m
, 
spread: spread def, 
cantor-interval: cantor-interval(a;b;f;n)
, 
cantor_cauchy: cantor_cauchy(a;b;k)
, 
divide: n ÷ m
, 
apply: f a
, 
natural_number: $n
FDL editor aliases : 
cantor-to-interval
Latex:
cantor-to-interval(a;b;f)  ==
    \mlambda{}n.eval  m  =  4  *  n  in
          let  x,y  =  cantor-interval(a;b;f;cantor\_cauchy(a;b;m)) 
          in  (x  m)  \mdiv{}  4
Date html generated:
2016_05_18-AM-11_04_19
Last ObjectModification:
2015_09_23-AM-09_18_25
Theory : reals
Home
Index