Nuprl Definition : cantor-to-interval

cantor-to-interval(a;b;f) ==  λn.eval in let x,y cantor-interval(a;b;f;cantor_cauchy(a;b;m)) in (x m) ÷ 4



Definitions occuring in Statement :  cantor_cauchy: cantor_cauchy(a;b;k) cantor-interval: cantor-interval(a;b;f;n) callbyvalue: callbyvalue apply: a lambda: λx.A[x] spread: spread def divide: n ÷ m multiply: m natural_number: $n
Definitions occuring in definition :  lambda: λx.A[x] callbyvalue: callbyvalue multiply: m spread: spread def cantor-interval: cantor-interval(a;b;f;n) cantor_cauchy: cantor_cauchy(a;b;k) divide: n ÷ m apply: a natural_number: $n
FDL editor aliases :  cantor-to-interval

Latex:
cantor-to-interval(a;b;f)  ==
    \mlambda{}n.eval  m  =  4  *  n  in
          let  x,y  =  cantor-interval(a;b;f;cantor\_cauchy(a;b;m)) 
          in  (x  m)  \mdiv{}  4



Date html generated: 2016_05_18-AM-11_04_19
Last ObjectModification: 2015_09_23-AM-09_18_25

Theory : reals


Home Index