Nuprl Definition : cauchy

cauchy(n.x[n]) ==  ∀k:ℕ+(∃N:{ℕ(∀n,m:ℕ.  ((N ≤ n)  (N ≤ m)  (|x[n] x[m]| ≤ (r1/r(k)))))})



Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) nat_plus: + nat: le: A ≤ B all: x:A. B[x] sq_exists: x:{A| B[x]} implies:  Q natural_number: $n
Definitions occuring in definition :  nat_plus: + sq_exists: x:{A| B[x]} all: x:A. B[x] nat: implies:  Q le: A ≤ B rleq: x ≤ y rabs: |x| rsub: y rdiv: (x/y) natural_number: $n int-to-real: r(n)
FDL editor aliases :  cauchy cauchy

Latex:
cauchy(n.x[n])  ==    \mforall{}k:\mBbbN{}\msupplus{}.  (\mexists{}N:\{\mBbbN{}|  (\mforall{}n,m:\mBbbN{}.    ((N  \mleq{}  n)  {}\mRightarrow{}  (N  \mleq{}  m)  {}\mRightarrow{}  (|x[n]  -  x[m]|  \mleq{}  (r1/r(k)))))\})



Date html generated: 2016_05_18-AM-07_38_09
Last ObjectModification: 2015_09_23-AM-09_02_18

Theory : reals


Home Index