Nuprl Lemma : classical-exists-implies-approx

I:{I:Interval| icompact(I)} . ∀f:{f:I ⟶ℝifun(f;I)} .
  ((¬¬(∃x:{x:ℝx ∈ I} (f[x] r0)))  (∀e:{e:ℝr0 < e} . ∃x:{x:ℝx ∈ I} (|f[x]| < e)))


Proof




Definitions occuring in Statement :  ifun: ifun(f;I) icompact: icompact(I) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rless: x < y rabs: |x| req: y int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False uall: [x:A]. B[x] prop: sq_stable: SqStable(P) squash: T uimplies: supposing a rfun: I ⟶ℝ interval-vec: I^n real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] guard: {T} top: Top req-vec: req-vec(n;x;y) subinterval: I ⊆  cand: c∧ B real-fun: real-fun(f;a;b) ifun: ifun(f;I) icompact: icompact(I) so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat_plus: + sq_exists: x:A [B[x]] rless: x < y

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:\{f:I  {}\mrightarrow{}\mBbbR{}|  ifun(f;I)\}  .
    ((\mneg{}\mneg{}(\mexists{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (f[x]  =  r0)))  {}\mRightarrow{}  (\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .  \mexists{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (|f[x]|  <  e)))



Date html generated: 2020_05_20-PM-00_41_02
Last ObjectModification: 2020_01_06-PM-00_15_38

Theory : reals


Home Index