Nuprl Lemma : closures-meet-sq'

[P,Q:ℝ ⟶ ℙ].
  ((∃a:{a:ℝa} (∃b:ℝ [((Q b) ∧ (a < b))]))
   (∃c:{c:ℝ(r0 ≤ c) ∧ (c < r1)} 
       ∀a:{a:ℝa} . ∀b:{b:ℝ(Q b) ∧ (a < b)} .
         ∃a':{a':ℝa'} (∃b':{b':ℝ(Q b') ∧ (a' < b')}  [((a ≤ a') ∧ (b' ≤ b) ∧ ((b' a') ≤ ((b a) c)))]))
   (∃y:ℝ(y ∈ closure(λz.(↓z)) ∧ y ∈ closure(λz.(↓z)))))


Proof




Definitions occuring in Statement :  member-closure: y ∈ closure(A) rleq: x ≤ y rless: x < y rsub: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] prop: all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] sq_exists: x:A [B[x]] member: t ∈ T and: P ∧ Q prop: all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a guard: {T} cand: c∧ B so_apply: x[s] so_lambda: λ2x.t[x] top: Top squash: T sq_stable: SqStable(P) pi2: snd(t) pi1: fst(t) false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: iff: ⇐⇒ Q rev_implies:  Q assert: b ifthenelse: if then else fi  bnot: ¬bb sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B rbetween: x≤y≤z less_than': less_than'(a;b) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 rge: x ≥ y nat_plus: + rless: x < y nequal: a ≠ b ∈  real: rmul: b member-closure: y ∈ closure(A)

Latex:
\mforall{}[P,Q:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}a:\{a:\mBbbR{}|  P  a\}  .  (\mexists{}b:\mBbbR{}  [((Q  b)  \mwedge{}  (a  <  b))]))
    {}\mRightarrow{}  (\mexists{}c:\{c:\mBbbR{}|  (r0  \mleq{}  c)  \mwedge{}  (c  <  r1)\} 
              \mforall{}a:\{a:\mBbbR{}|  P  a\}  .  \mforall{}b:\{b:\mBbbR{}|  (Q  b)  \mwedge{}  (a  <  b)\}  .
                  \mexists{}a':\{a':\mBbbR{}|  P  a'\}  .  (\mexists{}b':\{b':\mBbbR{}|  (Q  b')  \mwedge{}  (a'  <  b')\}    [((a  \mleq{}  a')  \mwedge{}  (b'  \mleq{}  b)  \mwedge{}  ((b'  -  a')  \mleq{}  ((\000Cb  -  a)  *  c)))]))
    {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  (y  \mmember{}  closure(\mlambda{}z.(\mdownarrow{}P  z))  \mwedge{}  y  \mmember{}  closure(\mlambda{}z.(\mdownarrow{}Q  z)))))



Date html generated: 2020_05_20-AM-11_29_59
Last ObjectModification: 2020_01_06-PM-00_20_11

Theory : reals


Home Index