Nuprl Lemma : continuous-add

[I:Interval]. ∀[f,g:I ⟶ℝ].
  (f[x] continuous for x ∈  g[x] continuous for x ∈  f[x] g[x] continuous for x ∈ I)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval radd: b uall: [x:A]. B[x] so_apply: x[s] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q continuous: f[x] continuous for x ∈ I all: x:A. B[x] member: t ∈ T nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: sq_exists: x:A [B[x]] cand: c∧ B iff: ⇐⇒ Q rless: x < y so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} rneq: x ≠ y rev_implies:  Q r-ap: f(x) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2

Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].
    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  +  g[x]  continuous  for  x  \mmember{}  I)



Date html generated: 2020_05_20-PM-00_14_01
Last ObjectModification: 2019_12_14-PM-03_10_47

Theory : reals


Home Index