Nuprl Definition : converges-to

lim n→∞.x[n] ==  ∀k:ℕ+(∃N:{ℕ(∀n:ℕ((N ≤ n)  (|x[n] y| ≤ (r1/r(k)))))})



Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) nat_plus: + nat: le: A ≤ B all: x:A. B[x] sq_exists: x:{A| B[x]} implies:  Q natural_number: $n
Definitions occuring in definition :  nat_plus: + sq_exists: x:{A| B[x]} all: x:A. B[x] nat: implies:  Q le: A ≤ B rleq: x ≤ y rabs: |x| rsub: y rdiv: (x/y) natural_number: $n int-to-real: r(n)
FDL editor aliases :  converges-to converges-to

Latex:
lim  n\mrightarrow{}\minfty{}.x[n]  =  y  ==    \mforall{}k:\mBbbN{}\msupplus{}.  (\mexists{}N:\{\mBbbN{}|  (\mforall{}n:\mBbbN{}.  ((N  \mleq{}  n)  {}\mRightarrow{}  (|x[n]  -  y|  \mleq{}  (r1/r(k)))))\})



Date html generated: 2016_05_18-AM-07_35_27
Last ObjectModification: 2015_09_23-AM-09_01_58

Theory : reals


Home Index